GPT Cache:1 介绍

GPT Cache可以实现什么效果

两个问题:

  • question1 = “what do you think about GPT”
  • question2 = “what do you feel like GPT”

第一次将会去询问GPT答案,测试消耗12s,第二次命中缓存,只需要0.06s。

图片[1]-葫芦娃AI-一起学AIGPT Cache:1 介绍-葫芦娃AI-一起学AI葫芦娃AI
q1.1.png
图片[2]-葫芦娃AI-一起学AIGPT Cache:1 介绍-葫芦娃AI-一起学AI葫芦娃AI
q1.2.png

中文问题:

测试注意修改模型:

towhee = Towhee(model="uer/albert-base-chinese-cluecorpussmall")
towhee = Towhee(model="uer/albert-base-chinese-cluecorpussmall")
towhee = Towhee(model="uer/albert-base-chinese-cluecorpussmall")
  • question1 = “做博后有什么优势?”
  • question2 = “为什么有人会选择做博后?”

第一次将会去询问GPT答案,测试消耗31s,第二次命中缓存,只需要0.14s。

图片[3]-葫芦娃AI-一起学AIGPT Cache:1 介绍-葫芦娃AI-一起学AI葫芦娃AI
q2.1.png
图片[4]-葫芦娃AI-一起学AIGPT Cache:1 介绍-葫芦娃AI-一起学AI葫芦娃AI
q2.2.png

如果觉得还不错,欢迎 star,项目地址:github.com/zilliztech/g

什么是GPT Cache?

大型语言模型(LLMs)是一种有前途和具有变革性的技术,近年来迅速发展。这些模型能够生成自然语言文本,并具有许多应用,包括聊天机器人、语言翻译和创意写作。然而,随着这些模型的规模增大,使用它们需要的成本和性能要求也增加了。这导致了在大型模型上开发GPT等应用程序方面的重大挑战。

为了解决这个问题,我们开发了GPT Cache,这是一个专注于缓存语言模型响应的项目,也称为语义缓存。该系统提供了两个主要的好处:

  1. 快速响应用户请求:缓存系统提供比大型模型推理更快的响应时间,从而降低延迟并更快地响应用户请求。
  2. 降低服务成本:目前大多数GPT服务是基于请求数量收费的。如果用户请求命中缓存,它可以减少请求数量并降低服务成本。

GPT缓存为什么会有帮助?

我认为是有必要,原因是:

  • 局部性无处不在。像传统的应用系统一样,AIGC应用程序也面临类似的热点问题。例如,GPT本身可能是程序员们热议的话题。
  • 面向特定领域的SaaS服务,用户往往在特定的领域内提出问题,具有时间和空间上的局部性。
  • 通过利用向量相似度搜索,可以以相对较低的成本找到问题和答案之间的相似关系。

快速接入

项目地址:github.com/zilliztech/g

pip 安装

pip install gptcache
pip install gptcache
pip install gptcache

如果只是想实现请求的精准匹配缓存,即两次一模一样的请求,则只需要两步就可以接入这个cache !!!

  1. cache初始化
<span class="kn">from</span> <span class="nn">gptcache.core</span> <span class="kn">import</span> <span class="n">cache</span>
<span class="n">cache</span><span class="o">.</span><span class="n">init</span><span class="p">()</span>
<span class="c1"># 如果使用`openai.api_key = xxx`设置API KEY,需要用下面语句替换它</span>
<span class="c1"># 方法读取OPENAI_API_KEY环境变量并进行设置,保证key的安全性 </span>
<span class="n">cache</span><span class="o">.</span><span class="n">set_openai_key</span><span class="p">()</span>
<span class="kn">from</span> <span class="nn">gptcache.core</span> <span class="kn">import</span> <span class="n">cache</span>
<span class="n">cache</span><span class="o">.</span><span class="n">init</span><span class="p">()</span>
<span class="c1"># 如果使用`openai.api_key = xxx`设置API KEY,需要用下面语句替换它</span>
<span class="c1"># 方法读取OPENAI_API_KEY环境变量并进行设置,保证key的安全性 </span>
<span class="n">cache</span><span class="o">.</span><span class="n">set_openai_key</span><span class="p">()</span>
from gptcache.core import cache cache.init() # 如果使用`openai.api_key = xxx`设置API KEY,需要用下面语句替换它 # 方法读取OPENAI_API_KEY环境变量并进行设置,保证key的安全性 cache.set_openai_key()
  1. 替换原始openai包
<span class="kn">from</span> <span class="nn">gptcache.core</span> <span class="kn">import</span> <span class="n">cache</span>
<span class="c1"># openai请求不需要做任何改变</span>
<span class="n">answer</span> <span class="o">=</span> <span class="n">openai</span><span class="o">.</span><span class="n">ChatCompletion</span><span class="o">.</span><span class="n">create</span><span class="p">(</span>
<span class="n">model</span><span class="o">=</span><span class="s2">"gpt-3.5-turbo"</span><span class="p">,</span>
<span class="n">messages</span><span class="o">=</span><span class="p">[</span>
<span class="p">{</span><span class="s2">"role"</span><span class="p">:</span> <span class="s2">"system"</span><span class="p">,</span> <span class="s2">"content"</span><span class="p">:</span> <span class="s2">"You are a helpful assistant."</span><span class="p">},</span>
<span class="p">{</span><span class="s2">"role"</span><span class="p">:</span> <span class="s2">"user"</span><span class="p">,</span> <span class="s2">"content"</span><span class="p">:</span> <span class="s2">"foo"</span><span class="p">}</span>
<span class="p">],</span>
<span class="p">)</span>
<span class="kn">from</span> <span class="nn">gptcache.core</span> <span class="kn">import</span> <span class="n">cache</span>

<span class="c1"># openai请求不需要做任何改变</span>
<span class="n">answer</span> <span class="o">=</span> <span class="n">openai</span><span class="o">.</span><span class="n">ChatCompletion</span><span class="o">.</span><span class="n">create</span><span class="p">(</span>
        <span class="n">model</span><span class="o">=</span><span class="s2">"gpt-3.5-turbo"</span><span class="p">,</span>
        <span class="n">messages</span><span class="o">=</span><span class="p">[</span>
            <span class="p">{</span><span class="s2">"role"</span><span class="p">:</span> <span class="s2">"system"</span><span class="p">,</span> <span class="s2">"content"</span><span class="p">:</span> <span class="s2">"You are a helpful assistant."</span><span class="p">},</span>
            <span class="p">{</span><span class="s2">"role"</span><span class="p">:</span> <span class="s2">"user"</span><span class="p">,</span> <span class="s2">"content"</span><span class="p">:</span> <span class="s2">"foo"</span><span class="p">}</span>
        <span class="p">],</span>
    <span class="p">)</span>
from gptcache.core import cache # openai请求不需要做任何改变 answer = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "foo"} ], )

如果想快速在本地体验下向量相似搜索缓存,(第一次运行需要等一定时间,因为需要下载模型环境、模型数据、依赖等),参考代码:

import json
import os
import time
from gptcache.cache.factory import get_data_manager, get_si_data_manager
from gptcache.core import cache, Cache
from gptcache.encoder import Towhee
from gptcache.ranker.simple import pair_evaluation
from gptcache.adapter import openai
def run():
towhee = Towhee()
# towhee = Towhee(model="uer/albert-base-chinese-cluecorpussmall")
os.environ["OPENAI_API_KEY"] = "API KEY"
cache.set_openai_key()
data_manager = get_si_data_manager("sqlite", "faiss",
dimension=towhee.dimension(), max_size=2000)
cache.init(embedding_func=towhee.to_embeddings,
data_manager=data_manager,
evaluation_func=pair_evaluation,
similarity_threshold=1,
similarity_positive=False)
question1 = "what do you think about GPT"
question2 = "what do you feel like GPT"
# question1 = "做博后有什么优势?"
# question2 = "为什么有人会选择做博后?"
start_time = time.time()
answer = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": question1}
],
)
end_time = time.time()
print("time consuming: {:.2f}s".format(end_time - start_time))
print(json.dumps(answer))
start_time = time.time()
answer = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": question2}
],
)
end_time = time.time()
print("time consuming: {:.2f}s".format(end_time - start_time))
print(answer)
if __name__ == '__main__':
run()
import json
import os
import time

from gptcache.cache.factory import get_data_manager, get_si_data_manager
from gptcache.core import cache, Cache
from gptcache.encoder import Towhee
from gptcache.ranker.simple import pair_evaluation
from gptcache.adapter import openai


def run():
    towhee = Towhee()
    # towhee = Towhee(model="uer/albert-base-chinese-cluecorpussmall")
    
    os.environ["OPENAI_API_KEY"] = "API KEY"
    cache.set_openai_key()

    data_manager = get_si_data_manager("sqlite", "faiss",
                                       dimension=towhee.dimension(), max_size=2000)
    cache.init(embedding_func=towhee.to_embeddings,
               data_manager=data_manager,
               evaluation_func=pair_evaluation,
               similarity_threshold=1,
               similarity_positive=False)

    question1 = "what do you think about GPT"
    question2 = "what do you feel like GPT"

    # question1 = "做博后有什么优势?"
    # question2 = "为什么有人会选择做博后?"

    start_time = time.time()
    answer = openai.ChatCompletion.create(
        model="gpt-3.5-turbo",
        messages=[
            {"role": "user", "content": question1}
        ],
    )
    end_time = time.time()
    print("time consuming: {:.2f}s".format(end_time - start_time))
    print(json.dumps(answer))

    start_time = time.time()
    answer = openai.ChatCompletion.create(
        model="gpt-3.5-turbo",
        messages=[
            {"role": "user", "content": question2}
        ],
    )
    end_time = time.time()
    print("time consuming: {:.2f}s".format(end_time - start_time))

    print(answer)


if __name__ == '__main__':
    run()
import json import os import time from gptcache.cache.factory import get_data_manager, get_si_data_manager from gptcache.core import cache, Cache from gptcache.encoder import Towhee from gptcache.ranker.simple import pair_evaluation from gptcache.adapter import openai def run(): towhee = Towhee() # towhee = Towhee(model="uer/albert-base-chinese-cluecorpussmall") os.environ["OPENAI_API_KEY"] = "API KEY" cache.set_openai_key() data_manager = get_si_data_manager("sqlite", "faiss", dimension=towhee.dimension(), max_size=2000) cache.init(embedding_func=towhee.to_embeddings, data_manager=data_manager, evaluation_func=pair_evaluation, similarity_threshold=1, similarity_positive=False) question1 = "what do you think about GPT" question2 = "what do you feel like GPT" # question1 = "做博后有什么优势?" # question2 = "为什么有人会选择做博后?" start_time = time.time() answer = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "user", "content": question1} ], ) end_time = time.time() print("time consuming: {:.2f}s".format(end_time - start_time)) print(json.dumps(answer)) start_time = time.time() answer = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "user", "content": question2} ], ) end_time = time.time() print("time consuming: {:.2f}s".format(end_time - start_time)) print(answer) if __name__ == '__main__': run()

实测输出:

time consuming: 12.83s
{
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": "As an AI language model, I do not have personal opinions or biases towards websites or specific platforms. However, I can say that GPT is a platform designed for interactive communication where users can connect with others and have conversations on various topics such as lifestyle, relationships, health, and personal growth among others. It could be a useful tool for individuals seeking support or advice from peers, or just for casual conversations to pass the time.",
"role": "assistant"
}
}
],
"created": 1680272771,
"id": "chatcmpl-709zfmJyYDEl4dfTFfmAlfq7luTjM",
"model": "gpt-3.5-turbo-0301",
"object": "chat.completion",
"usage": {
"completion_tokens": 87,
"prompt_tokens": 16,
"total_tokens": 103
}
}
time consuming: 0.06s
{'gpt_cache': True, 'choices': [{'message': {'role': 'assistant', 'content': 'As an AI language model, I do not have personal opinions or biases towards websites or specific platforms. However, I can say that GPT is a platform designed for interactive communication where users can connect with others and have conversations on various topics such as lifestyle, relationships, health, and personal growth among others. It could be a useful tool for individuals seeking support or advice from peers, or just for casual conversations to pass the time.'}, 'finish_reason': 'stop', 'index': 0}]}
time consuming: 12.83s
{
  "choices": [
    {
      "finish_reason": "stop",
      "index": 0,
      "message": {
        "content": "As an AI language model, I do not have personal opinions or biases towards websites or specific platforms. However, I can say that GPT is a platform designed for interactive communication where users can connect with others and have conversations on various topics such as lifestyle, relationships, health, and personal growth among others. It could be a useful tool for individuals seeking support or advice from peers, or just for casual conversations to pass the time.",
        "role": "assistant"
      }
    }
  ],
  "created": 1680272771,
  "id": "chatcmpl-709zfmJyYDEl4dfTFfmAlfq7luTjM",
  "model": "gpt-3.5-turbo-0301",
  "object": "chat.completion",
  "usage": {
    "completion_tokens": 87,
    "prompt_tokens": 16,
    "total_tokens": 103
  }
}
time consuming: 0.06s
{'gpt_cache': True, 'choices': [{'message': {'role': 'assistant', 'content': 'As an AI language model, I do not have personal opinions or biases towards websites or specific platforms. However, I can say that GPT is a platform designed for interactive communication where users can connect with others and have conversations on various topics such as lifestyle, relationships, health, and personal growth among others. It could be a useful tool for individuals seeking support or advice from peers, or just for casual conversations to pass the time.'}, 'finish_reason': 'stop', 'index': 0}]}
time consuming: 12.83s { "choices": [ { "finish_reason": "stop", "index": 0, "message": { "content": "As an AI language model, I do not have personal opinions or biases towards websites or specific platforms. However, I can say that GPT is a platform designed for interactive communication where users can connect with others and have conversations on various topics such as lifestyle, relationships, health, and personal growth among others. It could be a useful tool for individuals seeking support or advice from peers, or just for casual conversations to pass the time.", "role": "assistant" } } ], "created": 1680272771, "id": "chatcmpl-709zfmJyYDEl4dfTFfmAlfq7luTjM", "model": "gpt-3.5-turbo-0301", "object": "chat.completion", "usage": { "completion_tokens": 87, "prompt_tokens": 16, "total_tokens": 103 } } time consuming: 0.06s {'gpt_cache': True, 'choices': [{'message': {'role': 'assistant', 'content': 'As an AI language model, I do not have personal opinions or biases towards websites or specific platforms. However, I can say that GPT is a platform designed for interactive communication where users can connect with others and have conversations on various topics such as lifestyle, relationships, health, and personal growth among others. It could be a useful tool for individuals seeking support or advice from peers, or just for casual conversations to pass the time.'}, 'finish_reason': 'stop', 'index': 0}]}

可以发现,第一次请求消耗12s,类似的问题,第二次问则命中缓存,只需要0.06s。

项目地址:github.com/zilliztech/g

© 版权声明
THE END
喜欢就支持一下吧
点赞14 分享
You can't wait forever. Do something and make it happen.
你不可能永远等下去,去做点儿什么,让一切成真
评论 抢沙发
头像
欢迎您留下宝贵的见解!
提交
头像

昵称

取消
昵称表情代码图片

    暂无评论内容